Functor Calculus for under Categories and the De Rham Complex

نویسنده

  • R. MCCARTHY
چکیده

Goodwillie’s calculus of homotopy functors associates a tower of polynomial approximations, the Taylor tower, to a functor of topological spaces over a fixed space. We define a new tower, the varying center tower, for functors of categories with a fixed initial object, such as algebras under a fixed ring spectrum. We construct this new tower using elements of the Taylor tower constructions of Bauer, Johnson, and McCarthy for functors of simplicial model categories, and show how the varying center tower differs from Taylor towers in terms of the properties of its individual terms and convergence behavior. We prove that there is a combinatorial model for the varying center tower given as a proequivalence between the varying center tower and towers of cosimplicial objects; this generalizes Eldred’s cosimplicial models for finite stages of Taylor towers. As an application, we present models for the de Rham complex of rational commutative ring spectra due to Rezk on the one hand, and Goodwillie and Waldhausen on the other, and use our result to conclude that these two models will be equivalent when extended to E∞-ring spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

On the Derived Functor Analogy in the Cuntz-quillen Framework for Cyclic Homology

Cuntz and Quillen have shown that for algebras over a field k with char(k) = 0, periodic cyclic homology may be regarded, in some sense, as the derived functor of (non-commutative) de Rham (co-)homology. The purpose of this paper is to formalize this derived functor analogy. We show that the localization DefPA of the category PA of countable pro-algebras at the class of (infinitesimal) deformat...

متن کامل

De Rham Complex for Quantized Irreducible Flag Manifolds

It is shown that quantized irreducible flag manifolds possess a canonical q-analogue of the de Rham complex. Generalizing the well known situation for the standard Podleś’ quantum sphere this analogue is obtained as the universal differential calculus of a distinguished first order differential calculus. The corresponding differential d can be written as a sum of differentials ∂ and ∂. The univ...

متن کامل

Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras

Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivari...

متن کامل

Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016